The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1  1  X  1  3  1  1  1 2X  1  1  1 2X  1  1  1  1  1  1  0 X+6  1  1  1 2X+6  1  6  1  1  1  1  1  1  1  1  1  1 2X+6 2X+3  1  1  1  1  1  1 2X  1  1  1  1 X+3  1  1  1  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+3 2X+1  1 X+2  1  8  7  3  1 X+5 X+7 2X+2  1 2X+2  4 2X+4 X+7 X+8 2X+6 2X+3  1  6 2X+5  0 2X+6 2X  1 X+4 X+2  6  5  1 X+4 2X+6 X+7 X+8 2X+4  1  1 X+5  X  3 2X+4 2X+6 2X+2  1 2X+5 X+2  8 2X+2  1  4  4 2X 2X+7 2X+6
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+2 2X+4 X+1  8 2X X+3  2 X+7 2X+2  4  7  5  5 2X+6 X+6 X+5  X X+3 2X+3  1  1 2X 2X+7 X+5  1  3 2X+4 2X+1 2X+7  4  8 2X+5 X+1 X+4 2X+3 2X+5  2 2X+3 X+8 2X  7 2X+2 X+7  X  1  7 X+6 X+1 X+4 2X+8 2X+3  5 X+5 X+5 2X+2 2X+6

generates a code of length 73 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 140.

Homogenous weight enumerator: w(x)=1x^0+1140x^140+1196x^141+1566x^142+2442x^143+1784x^144+1644x^145+1854x^146+1326x^147+1254x^148+1584x^149+1076x^150+552x^151+1080x^152+444x^153+330x^154+318x^155+70x^156+6x^158+8x^159+8x^165

The gray image is a code over GF(3) with n=657, k=9 and d=420.
This code was found by Heurico 1.16 in 1.03 seconds.